Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium.
نویسندگان
چکیده
Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram-negative bacterium with an additional internal membrane system that fulfills the energetic requirements of the cell.
منابع مشابه
Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography.
Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photo...
متن کاملThe plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains.
The light reactions of oxygenic photosynthesis almost invariably take place in the thylakoid membranes, a highly specialized internal membrane system located in the stroma of chloroplasts and the cytoplasm of cyanobacteria. The only known exception is the primordial cyanobacterium Gloeobacter violaceus, which evolved before the appearance of thylakoids and harbors the photosynthetic complexes i...
متن کاملIsolation of a Photosystem II Associated 36 kDa Polypeptide and an Iron-Stress 34 kDa Polypeptide from Thylakoid Membranes of the Cyanobacterium Synechococcus PCC 6301 Grown under Mild Iron Deficiency
A 36 kDa polypeptide which previously was shown to be present in purified photosystem II complexes from Synechococcus PCC 6301 and which crossreacts with the antiserum raised against the soluble L-amino acid oxidase o f 50 kDa from Synechococcus PCC 6301 (A. E. Gau, G. Wälzlein, S. Gärtner, M. Kuhlmann, and E. K. Pistorius, Z. Naturforsch. 44c, 971, 1989), was isolated from thylakoid membranes ...
متن کاملIn vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes.
Thylakoid membranes isolated from the cyanobacterium Synechocystis sp. strain PCC6803 were capable of desaturating the acyl groups in monogalactosyl diacylglycerol. This desaturation reaction required the reduced form of ferredoxin.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular & cellular proteomics : MCP
دوره 15 6 شماره
صفحات -
تاریخ انتشار 2016